
產品分類
Product Category熱點新聞
Hot News從光化學原理到工藝設計的核心考量
在紫外高級氧化工藝(UV-AOPs)的工程化應用中,其經濟性與有效性的核心瓶頸,除了氧化劑及催化劑的投加量,往往在于光子利用效率這一根本性參數。從光化學第一、第二性原理來看,光子效率的理論計算效果比實際工程結果高很多,其巨大的差異在于光子的效率上。
深入探討光子從產生、傳輸、吸收到最終引發氧化反應的全鏈條過程中的效率決定因素,并系統分析影響光子效率的關鍵環節,包括光源光譜與反應物吸收光譜的匹配度、反應器內光子場的空間分布與流體流場的耦合、廢水基質對光子的競爭性吸收與淬滅效應等,有助于理解 UV-AOPs工藝,并針對性改進設計,為紫外線高級氧化工程實踐提供理論依據和實踐指導。
引言:為何要關注“光子效率"?

紫外高級氧化工藝(UV-AOPs),如UV/H?O?、UV/Cl?、光芬頓、UV/O3/H?O?等,因其能產生強氧化性的羥基自由基(·OH)等活性物質,在飲用水深度處理、再生水高品質回用、難降解工業廢水預處理等領域展現出巨大潛力。然而,在工程實踐中,普遍存在一個誤區:將UV系統簡單地視為一個能量輸入單元,僅關注總輸入電功率或粗略的“紫外劑量",而忽略了能量傳遞與轉化的最核心載體——光子的命運:一個光子激活一個分子。從能量守恒與轉化的角度看,UV-AOPs的本質是將電能通過紫外燈轉化為光子能,再由光子能驅動產生化學能(·OH等),最終用于降解污染物的化學能。在這一多級能量轉換鏈條中,每一個環節都存在顯著的效率損失。其中,“光子利用效率" 是連接物理輸入與化學產出的最關鍵環節,它直接決定了產生單位數量·OH自由基所需的電能成本,亦即整個工藝的運行成本基石。因此,將設計理念從“功率導向"轉變為“光子效率導向",是提升UV-AOPs工藝經濟性與競爭力的必然要求。

光子效率并非一個單一的指標,而是包含多個層級的效率體系。
這是第一層效率,指輸入電能轉化為特定波長紫外光子的效率。常用電光轉換效率衡量,即輸出紫外光功率與輸入電功率的比值WPE,低壓紫外燈(LPUV)在254nm處的WPE可達30-40%,而中壓紫外燈(MPUV)由于光譜范圍寬、熱損失大,WPE通常僅為10-20%。新興的UV-LED技術,其WPE正在快速提升,但在UVC波段,仍是當前未克服的主要挑戰。
光子從燈管表面發出后,在抵達目標反應物分子之前,會經歷一系列損耗:
石英套管透射損失:高純度合成石英的透光率 UV254nm 通常>90%,但污垢會使其急劇下降。
水體背景吸光損失:廢水中的溶解性有機物(DOM)、懸浮物(SS)、色度等會競爭性吸收或散射光子,有效光子通量隨傳播距離呈指數衰減(遵循比爾-朗伯定律)。
反應器壁面反射/吸收損失:反應器內壁的材料和設計影響光場的分布。
這是最核心的微觀效率指標,定義為發生特定光化學反應的分子數與體系吸收的光子數之比。例如,對于UV/H?O?工藝,生成·OH的量子產率Φ·OH決定了每個被H?O?吸收的光子能產生多少個·OH自由基。Φ值由光化學反應的固有路徑決定,理論最大值通常為1(一個光子引發一個初級反應)。在實際廢水體系中,由于副反應和能量淬滅,表觀量子產率往往低于理想值。
山東冠縣自來水廠----雙氧水+中壓紫外線高級氧化技術,該項目的成功運行為我國《城鎮給水紫外線高級氧化系統T/CAMIE01-2021》提供了實際案例支撐。
光譜匹配
讓“好鋼用在刀刃上",光化學第一定律(Grotthuss-Draper定律)指出:只有被吸收的光子才能引發光化學反應。因此,光源的發射光譜與目標反應物的吸收光譜的精準重疊,是高效利用光子的首要前提。比如 H?O?在200-300nm有較寬的吸收帶,尤其對短波長(如200-280nm)光子吸收更強。因此,在水質透過率較差(UVT-254nm<20%),選擇發射寬譜且富含短波紫外線的中壓紫外燈(MPUV) 通常比主要發射254nm單譜線的低壓紫外燈(LPUV)對H?O?的光解效率更高。 硝酸鹽(NO??)的最大吸收峰在200nm附近。因此,能發射185nm真空紫外線(VUV)的特殊低壓燈,對硝酸鹽的直接光解具有獨特優勢。
優化策略
在工藝選擇階段,應測定目標污染物及預設氧化劑在不同波長下的吸收光譜,作為選擇光源類型(LPUV, MPUV, VUV 燈)的首要依據。
應構建均勻高效的“光-液"光化學反應器,這是光子與目標分子發生反應的場所,其幾何設計直接決定了光子場的空間分布(輻照度場),而流體動力學特性(流場)則決定了光化學反應發生的概率,二者的耦合是提高光子效率的關鍵。
光程設計
根據廢水紫外透光率(UVT)優化反應器厚度(光程)。對于UVT(如>70%)廢水,可采用較長光程以保證光子被充分吸收;對于低UVT(如<20%)廢水,必須采用短光程設計,以避免“中心暗區"現象,確保流體大部分區域能接收到有效光子。
流場優化
為了實現強烈的湍流混合,使所有流體微元都能頻繁地暴露于高光強區(燈管附近)。計算流體動力學(CFD)模擬是優化流場、消除水力死區的強大工具。理想狀態是接近平推流(PFR)與全混流(CSTR)的優點結合,即整體呈平推流以避免返混,局部通過湍流實現充分混合。
光子通量密度
高強度的局部光子通量有助于克服污染物分子向·OH生成點的傳質限制,提升表觀反應速率。MPUV的高輻照度在此方面更具優勢。
未完待續~

